Navigation

Ferrofluide

Bereits seit etwa 150 Jahren ist bekannt, dass man durch geschicktes Hinzufügen von Eisenteilchen Wasser magnetische Eigenschaften geben kann, aufgrund der Gravitation setzte sich aber dabei das Eisen nach kurzer Zeit ab. Um das zu verhindern, verringerte man die Teilchengröße, was aber ein unwiderrufliches Verklumpen der Teilchen zur Folge hatte. Erst in den 60er Jahren konnte auch dieses Problem durch spezielle Zusammensetzung des Fluids beseitigt werden. Das erste Patent für ein Ferrofluid wurde der NASA 1965 erteilt. In der frühen Entwicklung des Raumfahrtprogramms untersuchte die NASA die Möglichkeit Ferrofluid als flüssigen Raketentreibstoff unter Schwerelosigkeit mittels Magnetfelder zu transportieren. Gerade die Vereinigung der Fähigkeit von Flüssigkeiten, jede denkbare Form anzunehmen, mit den magnetischen Eigenschaften der zugesetzten Kleinstteilchen lassen eine Vielzahl von Anwendungen erahnen. Die folgenden Darlegungen über magnetische Flüssigkeiten sollen einen kurzen Einblick in die Möglichkeiten dieses interessanten Werkstoffes geben, der als Ferrofluid oder Magnetofluid bekannt ist.


Aufbau

Ferrofluide sind stabile kolloidale Suspensionen von magnetischen Nanopartikeln in einer Trägerflüssigkeit. Die magnetischen Partikel haben eine annähernd sphärische Form und einen mittleren Durchmesser von 2 bis 20 nm (Die Spitze einer Nadel ist ungefähr 0,3 mm). Die Partikel sind für das Auge unsichtbar und können nur mit einem Elektronenmikroskop sichtbar gemacht werden. Ein einziger Tropfen Ferrofluid beinhaltet über eine Billiarde (1015) mikroskopisch kleiner Magnete. Diese Magnete, die die kleinsten der Welt sind, zeigen den Grenzbereich des Magnetismus. Wären sie nur wenig kleiner, würde ihr Magnetismus verschwinden. Die magnetischen Partikel sind mit einem Material beschichtet welches das Verklumpen verhindert. Die Teilchen können sich frei in der Trägerflüssigkeit bewegen und setzen sich weder im Schwerefeld noch im Magnetfeld ab (Abb. 1).

Aufbau eines Ferrofluids
Abbildung 1: Aufbau eines Ferrofluides

Ohne äußeres Magnetfeld sind die magnetischen Momente der einzelnen Partikel zufällig ausgerichtet. Nach außen hin zeigt das Ferrofluid keine Magnetisierung. In Anwesenheit eines äußeren Magnetfeldes richten sich die einzelnen Teilchen sofort in Richtung der magnetischen Kraftlinien aus, weshalb das Ferrofluid wie eine homogene Flüssigkeit unmittelbar auf das Feld reagiert. Als Material für die Magnetteilchen wird am häufigsten Magnetit (Fe3O4) eingesetzt, aber es sind auch Kobalt- und Nickelverbindungen anzutreffen. Die seit jüngster Zeit untersuchten Metallkerne (Fe, Co, FeCo) sind recht vielversprechend. Bei der Trägerflüssigkeit handelt es sich meist um Kohlenwasserstoffe (Oktan, Petroleum u.ä.) und ihre Verbindungen (z.B. Fluorkohlenwasserstoffe) oder Wasser.


Mechanische Eigenschaften

Von den (hydro-)mechanischen Eigenschaften haben bisher nur Viskosität (Zähigkeit), Dichte und Aggregatzustand wesentliche Bedeutung für die technischen Anwendungen.
Da Magnetofluide keine reinen Flüssigkeiten sind, hängt ihre Viskosität zum einen von der Trägerflüssigkeit selbst und zum anderen von der Größe der Feststoffanteile ab, außerdem besteht eine Abhängigkeit von der magnetischen Feldstärke, die auf das Magnetofluid wirkt. Ohne äußeres Feld verhält sich das Magnetofluid wie eine gewöhnliche Flüssigkeit. Die Viskosität ist richtungsunabhängig und in der Regel um so höher, je höher die Siedetemperatur und je größer der Feststoffanteil ist. Um die Viskosität zu verringern, bräuchte man lediglich die Flüssigkeit zu verdünnen, dabei gehen aber auch die magnetischen Eigenschaften verloren. Durch Anlegen eines Magnetfeldes lagern sich die Feststoffteilchen zu langen Ketten zusammen, dies erhöht die Viskosität. Mit speziellen Verfahren kann man die Feldstärkeabhängigkeit der Viskosität einer magnetischen Flüssigkeit weiter verstärken und nutzbar machen. Diese so genannten magnetorheologischen Flüssigkeiten (MRF) sollen aber hier nicht weiter betrachtet werden. Die Dichte eines Magnetofluids ist abhängig von der Trägerflüssigkeit, dem magnetisierbaren Feststoff und der Konzentration. 


Anwendungen


Dichtung

Die häufigste Anwendung der Magnetofluide ist zur Zeit zweifelsfrei die als Dichtung. Durch Permanentmagnete wird das Magnetofluid an der Dichtungsstelle gehalten und kann dabei sogar starkem Druck widerstehen. Selbst nach Überschreiten des Durchbruchdruckes wird nach Drucknormalisierung die volle Dichtfähigkeit wiederhergestellt.
Anzutreffen sind solche Dichtungen beispielsweise bei schnell drehenden Plattenlaufwerken, um den Informationsträger gegen Staub zu schützen. Wegen der hohen Zuverlässigkeit setzt man diese Dichtungen auch in der Raumfahrt ein. Um allerdings den Normaldruck gegenüber Vakuum abzudichten benötigt man ca. sechs hintereinandergeschaltete Ringe.
Aufgrund verschärfter Umweltschutzgesetzgebung werden Magnetofluiddichtungen immer mehr in der chemischen Industrie verwendet, insbesondere um zu verhindern, dass toxische Stoffe in die Atmosphäre entweichen können.


Dämpfung

Dämpfung bedeutet, eine Bewegung abzubremsen. Dabei wird die überschüssige Energie meist in Wärme umgesetzt. Im Wesentlichen gibt es zwei Möglichkeiten, mit Hilfe von Magnetofluiden einer Bewegung Energie zu entziehen: Einerseits durch direkten mechanischen Kontakt und andererseits über eine magnetische Kopplung, die dann der Flüssigkeit eine Strömung gibt, welche die entstehende Reibungswärme abführt. Die entstehende Reibungswärme wird einfach durch die Strömung abgeführt werden. Selbst bei offenen Systemen ist kein Flüssigkeitsverlust zu verzeichnen.


Stofftrennung

Magnetofluide kann man auch nutzen, um nichtmagnetische Stoffe verschiedener Dichte voneinander zu trennen. Dazu sind diese in das Magnetofluid zu bringen, welches sich zwischen den Polen eines Elektromagneten befindet. Im negativen Feldgradienten erfahren sie einen zusätzlichen Auftrieb. Stoffe einer ganz bestimmten Dichte schweben dann. Materialien mit einer größeren Dichte sinken auf den Boden oder fallen unten aus dem Magnetofluid heraus. Die übrigen Stoffe schwimmen an der Oberfläche. Durch Veränderung des Feldes wird ein Stoffgemisch nacheinander in seine Bestandteile zerlegt. Mit entsprechenden Bestückungs- und Entnahmevorrichtungen lässt sich dieser Prozess automatisieren.
Eingesetzt wird dieses Verfahren bei der Gewinnung von Gold und Edelsteinen, sowie in der Automobilindustrie bei der Rückgewinnung von Bunt- und Edelmetallen aus geschredderten Autoteilen und bei der Entsorgung von Elektronikschrott. Bei Letzterem werden schwerere schadstoffbelastete Kondensatoren aus dem Gemisch herausgezogen und einer umweltgerechten Entsorgung zugeführt.


Magnetofluide als Hilfsmittel

Einen herkömmlichen Antrieb kann man in bestimmten Fällen durch einfaches Einbringen magnetischer Flüssigkeit verbessern ohne seinen Aufbau, von notwendigen Optimierungen abgesehen, wesentlich zu verändern. Die magnetischen Flüssigkeiten fließen an die Stellen, an denen die größten Feldstärken herrschen und in der Regel auch die Antriebskräfte wirken. Die Verbesserungen bestehen in der Verringerung des Streuflusses, der Konzentration des Flusses im Wirkungsraum, der Erhöhung der wirksamen Permeabilität und in der Erzeugung eines verwertbaren Flüssigkeitsdruckes. Außerdem kann eine bessere Ableitung der Wärme erfolgen.
Ein anschauliches Beispiel ist der Lautsprecher. Zwischen den Polen des Permanentmagneten befindet sich im Magnetofluid die Erregerspule, welche eine Membrane entsprechend dem eingespeisten Strom in Bewegung setzt. Die Flüssigkeit hat hierbei noch einen weiteren Vorteil: ungewollte Eigenschwingungen der Membrane werden gedämpft.


Medizintechnik

Für medizintechnische Anwendungen sind vor allen Dingen die Teilcheneigenschaften von Interesse. So finden Magnetofluide zum Beispiel Anwendung als Kontrastmittel bei Röntgendarstellungen und zur Durchlässigkeitsprüfung von Gefäßsystemen. Durch äußere Felder können Wirksubstanzen mit Hilfe von Magnetofluid als Träger an eine gewünschte Stelle im Körper positioniert werden. Das Magnetofluid lässt sich schließlich durch Magnete wieder aus dem Blutkreislauf entfernen.
Magnetofluide erwärmen sich wegen der angeregten Teilchenbewegung in einem magnetischen Wechselfeld. Durch gezieltes Einbringen in Krebszellen kann man diese dann durch Überhitzung (Hyperthermie) zerstören. Dabei hat sich als sehr positiv erwiesen, dass sich die magnetischen Flüssigkeiten besonders an Lebermetastasen anlagern.


Sensortechnik

In die Sensortechnik haben Magnetofluide als Druck-, Neigungs- oder Beschleunigungssensoren Eingang gefunden. Ihre Aufgabe ist es dabei, die mechanische Größe durch Änderung der Induktivität einer Spulenanordnung in eine elektrisch messbare umzuwandeln. Dies geschieht, indem das Magnetofluid die Spule mehr oder weniger ausfüllt.


Darstellung

Der Vollständigkeit halber sei noch eine Anwendung erwähnt, die der grafischen Darstellung dient. Es handelt sich um Tintenstrahldrucker, die eine magnetische Flüssigkeit als Tinte benutzen. Das Funktionsprinzip ist ähnlich dem einer Bildröhre. Ein Tintenstrahl wird in einzelne Tröpfchen gequantelt und dann durch Magnetfelder in horizontaler und vertikaler Richtung abgelenkt.


Versuch

Im Versuch zeigen wir die die Auswirkungen magnetischer Felder auf Ferrofluide und erzeugen so einige interessante Strukturen aus der magnetischen Flüssigkeit.


Abbildung 2: Ferrofluidspitzen im Magnetfeld